

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 0580/41

Paper 4 (Extended) May/June 2024

2 hours 30 minutes

You must answer on the question paper.

You will need: Geometrical instruments

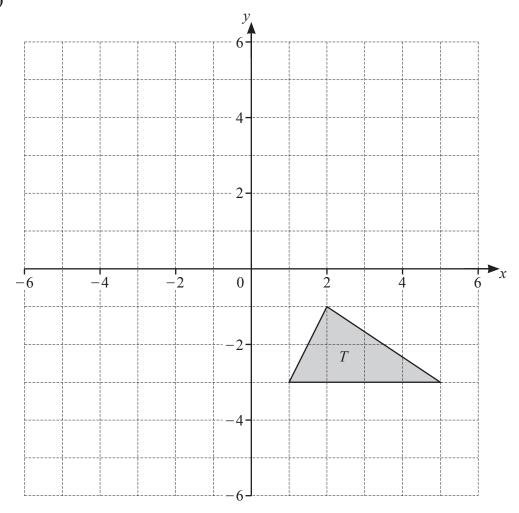
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π , use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 130.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.


1 (a) The table shows the areas, in km², of the four largest rainforests in the world.

Rainforest	Area (km ²)
Amazon	5 500 000
Congo	2 000 000
Atlantic	1315000
Valdivian	250 000

mazon rainforest
% [1] Atlantic : Congo
[2]
Colombia.
d Peru.
% [3]
(

	(iv)	The area of the Amazon rainforest represents $\frac{27}{50}$ of the total area of rainforest in the world.
		Calculate the total area of rainforest in the world. Give your answer correct to the nearest 100 000 km ² .
		21.6 your and wer correct to the mental root of the ro
		1 2 [23]
	(v)	In the world, 60.7 hectares of rainforest are lost every minute.
	(v)	
		Calculate the total area, in hectares, of rainforest that is lost in 365 days. Give your answer in standard form.
		hectares [3]
(b)		Amazon river has a length of 6440 km, correct to the nearest 10 km. Congo river has a length of 4400 km, correct to the nearest 100 km.
		culate the upper bound of the difference between the lengths of the Amazon river and the ago river.
		km [3]

2 (a)

On the grid, draw the image of

(i) triangle
$$T$$
 after a reflection in the x -axis [1]

(ii) triangle
$$T$$
 after a translation by the vector $\begin{pmatrix} -5 \\ -2 \end{pmatrix}$ [2]

(iii) triangle
$$T$$
 after an enlargement by scale factor $-\frac{1}{2}$ with centre $(-1,1)$. [2]

(b)	A shape P is enlarged by scale factor 3 to give shape Q .
	Shape Q is then enlarged by scale factor $\frac{2}{5}$ to give shape R
	The area of shape P is 10 cm^2 .
	Calculate the area of shape R .

cm ²	[3]
 cm ⁻	[3]

3	(a)		$C = \frac{1}{4}xy^2$ Find C when $x =$	5 and $y = 8$	i.		
		(ii)	Find the positive v	value of y w	then $C = 15$ and $x =$		 [2]
	(b)	Wri	te as a single fraction	on in its simp	plest form. $\frac{4}{x-1} - \frac{3}{2x+5}$	<i>y</i> =	[2]
	(c)	Exp	and and simplify.	(2x+3)(4-	$(-x)^2$		[3]

(d) Simplify.

$$\left(\frac{y^8}{16x^{16}}\right)^{-\frac{3}{4}}$$

.....[3]

4 (a) Jianyu records the time, in seconds, that some cars take to travel 195 m. The box and whisker plot shows this information.

	(i)	ı F	Find	the	median	time
J	Ш) 1	· IIIu	uic	median	ume.

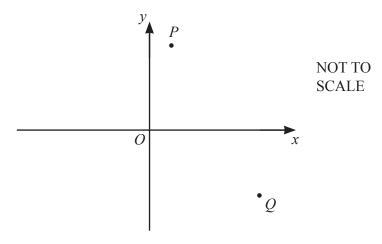
S	[1]]
---	-----	---

(ii) Find the interquartile range.

 S	[1]

(iii) Find the difference between the average speed of the fastest car and the average speed of the slowest car.

Give your answer in kilometres per hour.


..... km/h [5]

(b) Matilda records the distances that 80 different cars can travel with a full tank of fuel. The table shows this information.

Distance (dkm)	250 < <i>d</i> ≤ 300	$300 < d \le 400$	400 < <i>d</i> ≤ 420	420 < <i>d</i> ≤ 450	450 < <i>d</i> ≤ 500
Frequency	7	13	19	21	20

Distance (a km)		$250 < a \leq 300$	$300 < a \leq 400$	$400 < a \le 420$	$420 < a \le 430$	$450 < a \leq 500$
Frequency		7	13	19	21	20
(i)	Write	e down the class is	nterval that contain		< d <	ś[1]
(ii)	Calc	ulate an estimate o	of the mean.			
						km [4]
(iii)				nation in the table $0 < d \le 300$ is 2.		
	Calc	Calculate the height of the bar for each of the following intervals.				
				$300 < d \le 400$		cm
				$400 < d \le 420$		cm
				$420 < d \le 450$		cm [3]
(iv)	Two	of the 80 cars are	chosen at random	1.		
		_	at, with a full tand ravel not more tha	k of fuel, one of than 300 km.	ne cars can travel	more than 450 km

5 (a) P is the point (1, 7). Q is the point (5, -5).

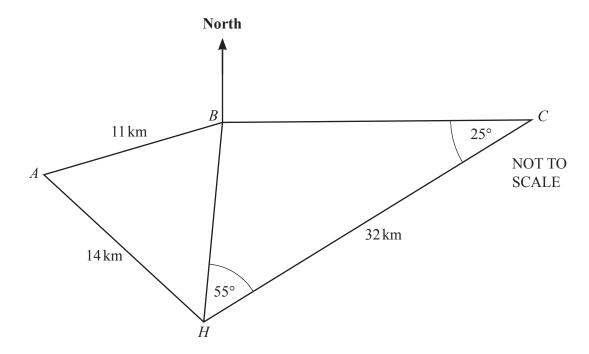
(i) Find \overrightarrow{PQ} .

$$\overrightarrow{PQ} = \left(\right)$$
 [2]

(ii) Show that $|\overrightarrow{OP}| = |\overrightarrow{OQ}|$.

[3]

(iii) PQ is a chord of a circle with centre O.Calculate the circumference of this circle.


.....[2]

(iv) PQ is the diameter of a different circle with centre R. Find the coordinates of R.

(.....) [2]

	(v)	Find the equation of the perpendicular bisector Give your answer in the form $y = mx + c$.	of PQ.	
			$y = \dots $ [4	4]
(b)		position vector of A is \mathbf{a} . position vector of B is \mathbf{b} .		
	M is	is a point on AB such that $AM : MB = 2 : 3$.		
		d, in terms of \mathbf{a} and \mathbf{b} , the position vector of M . e your answer in its simplest form.		

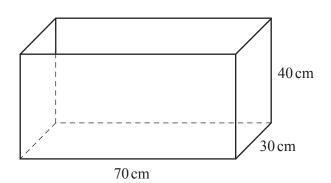
6

The diagram shows the positions of two lighthouses A and B, a boat C and a harbour H. C is due east of B.

(a) Find the bearing of the harbour from boat C.

	Г11
• • • • • • • • • • • • • • • • • • • •	L + J

(b) (i) Show that angle $CBH = 100^{\circ}$.


[1]

(ii) Show that BH = 13.7 km, correct to 1 decimal place.

[3]

(c)	Cal	culate the bearing of A from B .
		[5]
(d)	At 1	I pm boat C sails 32 km directly to the harbour at a speed of 10 knots.
	(i)	Calculate the time when boat C arrives at the harbour. Give this time correct to the nearest minute. [1 knot = 1.852 km/h]
		[4]
	(ii)	Calculate the distance of boat C to the harbour when boat C is at the shortest distance from
	()	lighthouse B .
		km [3]

7 (a)

NOT TO SCALE

The diagram shows a box in the shape of a cuboid. The box is open at the top.

(i) Work out the surface area of the inside of the open box.

	cm^2	[3]
•••••	CIII	LJ.

(ii) Cylinders with height 20 cm and diameter 15 cm are placed in the box.

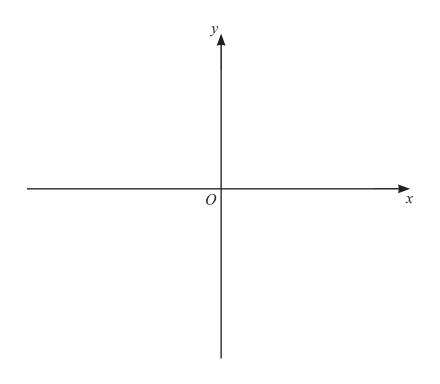
Work out the maximum number of these cylinders that can completely fit inside the box.

.....[3]

(b)	A solid bronze cone has a mass $750 \mathrm{g}$. The density of the bronze is $8.9 \mathrm{g/cm^3}$.

The ratio radius of cone : height of cone = 1:3.

(i) Show that the radius of the cone is 2.99 cm, correct to 3 significant figures. [Density = mass ÷ volume]


[The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

[4]

(ii) Calculate the total surface area of the cone. [The curved surface area, A, of a cone with radius r and slant height l is $A = \pi r l$.]

..... cm² [5]

8 (a) On the axes, sketch the graph of $y = x^2 + 7x - 18$. On your sketch, write the values where the graph meets the x-axis and the y-axis.

[4]

(b) (i) Find the derivative of $y = x^2 - 3x - 28$.

.....[2]

(ii) Find the coordinates of the turning point of $y = x^2 - 3x - 28$.

(.....) [3]

(c)	The line $y = 5 - 2x$ intersects the graph of $y = x^2 - 3x - 28$ at point P and point Q .
	Find the coordinates of P and Q . You must show all your working and give your answers correct to 2 decimal places.
	(,)
	(,) [6]

9		f(x) = 4x + 1	g(x) = 6 - 2x	$h(x) = 3^{x-2}$
	(a)	Find		
		(i) f(3)		

.....[1]

(ii) gf(3).

.....[1]

(b) Find $g^{-1}(x)$.

 $g^{-1}(x) = \dots$ [2]

(c) Find x when f(x) = g(2x-7).

 $x = \dots$ [4]

(d)	Find the value of hh(2).		
(e)	Find x when $h^{-1}(x) = 10$.		[2]
		<i>x</i> =	[2]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.